Planning an Agricultural Water Resources Management System: A Two-Stage Stochastic Fractional Programming Model
نویسندگان
چکیده
Irrigation water management is crucial for agricultural production and livelihood security in many regions and countries throughout the world. In this study, a two-stage stochastic fractional programming (TSFP) method is developed for planning an agricultural water resources management system under uncertainty. TSFP can provide an effective linkage between conflicting economic benefits and the associated penalties; it can also balance conflicting objectives and maximize the system marginal benefit with per unit of input under uncertainty. The developed TSFP method is applied to a real case of agricultural water resources management of the Zhangweinan River Basin China, which is one of the main food and cotton producing regions in north China and faces serious water shortage. The results demonstrate that the TSFP model is advantageous in balancing conflicting objectives and reflecting complicated relationships among multiple system factors. Results also indicate that, under the optimized irrigation target, the optimized water allocation rate of Minyou Channel and Zhangnan Channel are 57.3% and 42.7%, respectively, which adapts the changes in the actual agricultural water resources management problem. Compared with the inexact two-stage water management (ITSP) method, TSFP could more effectively address the sustainable water management problem, provide more information regarding tradeoffs between multiple input factors and system benefits, and help the water managers maintain sustainable water resources development of the Zhangweinan River Basin. OPEN ACCESS Sustainability 2015, 7 9847
منابع مشابه
A Stochastic Model for Water Resources Management
Irrigation water management is crucial for agricultural production and livelihood security in many regions and countries throughout the world. Over the past decades, controversial and conflictladen water-allocation issues among competing municipal, industrial and agricultural interests have raised increasing concerns. Particularly, growing population, varying natural conditions and shrinking wa...
متن کاملOptimization Model of Hirmand River Basin Water Resources in the Agricultural Sector Using Stochastic Dynamic Programming under Uncertainty Conditions
In this study, water management allocated to the agricultural sector’ was analyzed using stochastic dynamic programming under uncertainty conditions. The technical coefficients used in the study referred to the agricultural years, 2013-2014. They were obtained through the use of simple random sampling of 250 farmers in the region for crops wheat, barley, melon, watermelon and ruby grapes under ...
متن کاملA multi-stage stochastic programming for condition-based maintenance with proportional hazards model
Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...
متن کاملApplication of Linear and Non-linear Programming Model to Assess the Sustainability of Water Resources in Agricultural Patterns
Water resources sustainability is one of the major issues in the agricultural sustainability. In this study sustainability of water resources has been investigated by use of linear and non-linear models in six models based on optimal utilization of water resources in the north parts farms of Iran because of incorrect use of agricultural water resources, from 2011 to 2012. Also “gross margin per...
متن کاملInexact Two-Stage Stochastic Programming for Water Resources Allocation under Considering Demand Uncertainties and Response—A Case Study of Tianjin, China
In this paper, an inexact two-stage stochastic programming model was developed for supporting regional water resource allocation management under uncertainties. The proposed model is an integrated framework of interval parameter programming and two-stage stochastic programming, which can tackle uncertain parameters expressed as interval values with probability distribution information. The prop...
متن کامل